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The paper presents a mixed wavelet/spectral Chebychev method for solving the
unsteady 2D Stokes equations in the vorticity-stream function formulation with pe-
riodicity condition in one direction. After an appropriate time discretisation of the
equations, one has to solve at each time step a stationary Stokes-like problem. A
capacitance matrix method is used to eliminate the problem of boundary condi-
tions. This leads to solving a series of Helmholtz problems. The spatial discretisation
makes use of the wavelet method in the periodic direction and the spectral collocation
Chebychev method in the non-periodic direction. The resolution of the discrete
Helmholtz problem is done by means of the diagonalisation technique in the non-
periodic direction. The system then splits into a sequence of one dimensionnal peri-
odic Helmholtz problems which are efficiently inverted using FFTs. Numerical tests
show both the stability and the accuracy of the method.c© 1998 Academic Press

1. INTRODUCTION

In this paper we develop a method which combines the wavelet method in one direc-
tion and the spectral Chebychev method in another direction for solving incompressible
unsteady Stokes equations. There have been numerous computations of incompressible
flow using mixed methods such as finite difference/spectral methods which can be found
in the literature. In a framework strictly spectral, when periodicity conditions are assumed
in some coordinates space, a mixed spectral Fourier/Chebychev method that uses Fourier
expansion in the periodic direction and the Chebychev method in the other direction is com-
monly used. Recently, a new numerical concept was introduced and is gaining increasing
popularity. The method is based on the expansion of functions in terms of a set of basis
functions called wavelets. Wavelets are a new family of functions which constitute a basis
of L2(R). They have many attractive features: orthogonality, compact support, arbitrary
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regularity, and simplicity since they are obtained by dilation and translation of a single
function. In data analysis where it was first applied, the wavelet transform was found to
give better results than the classical Fourier transform. Wavelets combine the advantage
of both finite-difference (or finite elements) and spectral methods: good localisation and
spectral accuracy in regard to the degree of regularity of the basis functions. Therefore
one expects that the wavelets method will be well suited for situations where classical
methods such as finite differences do not converge and where Fourier method does not
apply.

The flow is assumed to be bidimensional, with periodicity conditions in one direction.
The equations are considered in the vorticity-stream function formulation. This formulation
automatically satisfies the incompressibility condition and allows one to reduce the number
of equations to be solved. However, the nature of the boundary conditions is troublesome
since they imply the specification of both the stream function and its normal derivative but
none for the vorticity. Various ways are usually used to tackle this difficulty; the common
way consists of deriving boundary conditions for the vorticity by manipulating the Neu-
mann boundary condition∂nψ |0 and the relationω=−∇2ψ . This technique has been used
in finite differences methods or finite elements methods as well as in spectral methods (cf.
Quartapelle [6] and Weinanet al. [5] for discussions on the basic issues on the numerical
treatment of the vorticity-stream function equations). Glowinski and Pironneau [17] studied
the relation between the trace ofω and the normal derivative ofψ on the boundary and they
introduced a treatment of boundary conditions forω. Using a finite elements approximation
they deduced a linear systemAω|0 = ∂nψ |0 for the trace ofω on the boundary via the solu-
tions of Dirichlet problems for−∇2. The method was further perfected by Deanet al.[18].
This treatment of boundary conditions forω is usually called the influence matrix method.
In spectral approximation the influence matrix (Ehrenstein and Peyret [12]) is the method
most frequently used for solving the equations of vorticity-stream function. An alternative
to the influence matrix method is the vorticity integral method in which boundary con-
ditions are derived for the vorticity by using Green’s identities (Quartapelle, [6]; Nguyen
et al. [8]). In the present wavelet/spectral method, we use the influence matrix method to
solve the problem. The influence matrix, also called the capacitance matrix method, has
been widely used to solve linear elliptic problems where boundary conditions present some
difficulties. For instance it is commonly associated with the domain imbedding technique
for solving problems in complex geometries (Garba [2]). It is also used for situations where
boundary conditions are not available for all the unknowns, particularly in incompress-
ible flow calculations. In this context, the influence matrix method has been used first by
Kleiser and Schumann [7] in the spectral calculation of 3D flow in primitive variables with
two directions of periodicity. Later the method was extended by Le Qu´eré and Aziary de
Rocquefort [10] and Tuckerman [9] for situations with more complicated boundary con-
ditions. In the vorticity-stream function formulation, Vanelet al. [11] and Ehrenstein and
Peyret [12] developed a capacitance matrix method to overcome the lack of boundary con-
ditions for the vorticity. The capacitance matrix we use here is similar to that presented
Ehrenstein and Peyret [12].

In Section 2, we present the Stokes-equations and their time discretisation. A three-level
scheme which provides a second order accuracy is used to discrete the problem. Then at
each time step, one has to solve a stationary Stokes-type problem.

The method for solving this problem is presented in Section 4. It makes use of the influence
matrix technique. The influence matrix method leads to solving a series of Helmholtz
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problems with periodicity condition in one Direction and Dirichlet boundary conditions in
the other direction.

Section 3 is devoted to the numerical resolution of the Helmholtz problem. In the direction
of periodicity, the discretisation is done in the basis constituted by the translates and the
dilations of the Daubechies scaling function. We present two methods for the wavelet
discretisation: the first method is of collocation kind (Garba [3]) and the second is based
on the Galerkin method (Amaratunga and Williams [4] and Qian and Weiss [19, 20]). In
the non-periodic direction the discretisation is done in the collocation Chebychev method.
The system of equations arising from the wavelet/collocation Chebychev discretisation is
inverted by applying first the diagonalisation technique in the non-periodic direction. The
problem is then split into a series of one-dimensional Helmholtz equations discretised in
the wavelet method. The solution of these problems is efficiently obtained by resorting to
FFTs.

2. THE STOKES EQUATIONS

The flow is assumed to be bidimensional in the plane (x, y) and periodic in thex direction.
The unsteady Stokes equations can be conveniently written in the vorticity-stream function
formulation as

∂tω − ν∇2ω = f in D (1)

∇2ψ + ω = 0 in D (2)

with boundary conditions in they direction given by

ψ = g on 0 (3)

∂yψ = h on0 (4)

and periodic boundary conditions in thex direction.
The constantν in (1) is the viscosity. The vorticityω and the stream functionψ are

related to the velocity fieldV = (u, v) by

ω = ∂xv − ∂yu, u = ∂yψ, v = −∂xψ. (5)

From the initial condition,V(0)=V0 prescribed for the velocity, an initial condition ded-
uced for the vorticity variableω(t = 0)=ω0= ∂xv0 − ∂yu0. The domainD and boundary
0 are defined by

D = {(x, y), 0≤ x ≤ 1,−1≤ y ≤ 1} (6)

0 = {(x,−1), 0≤ x ≤ 1} ∪ {(x, 1), 0≤ x ≤ 1}. (7)

The vorticity equation (1) is discretised in time through the scheme

3ωn+1− 4ωn + ωn−1

1t
− ν∇2ωn+1 = f n+1, (8)
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which provides a second order accuracy in time. Equation (2) of the stream function and
the boundary conditions (3)–(4) are discretised in an implicit manner

∇2ψn+1+ ωn+1 = 0 (9)

ψn+1 = gn+1 (10)

∂yψ
n+1 = hn+1. (11)

The parameter1t in (8) denotes the time step and the quantityφn stands for the approxima-
tion of the functionφ at timetn= n1t . Then at each time step one has to solve a stationary
Stokes-like problem

∇2ωn+1− σωn+1 = f n,n−1 in D (12)

∇2ψn+1+ ωn+1 = 0 in D (13)

with boundary conditions (10)–(11) and periodicity condition inx.
In (12) the parameterσ = 3/(21t) and the right hand sidef n,n−1 contains the forcing

term f n+1 and all the quantities coming from the previous time steps(n− 1)1t andn1t .
The main difficulty in solving the problem (10)–(13) numerically arises from the nature

of the boundary conditions: two boundary conditions are prescribed for the stream function
while no boundary conditions are available for the vorticity. We use the capacitance matrix
method to circumvent this difficulty.

3. THE HELMHOLTZ SOLVER

Because the numerical solution of the Stokes-like problem (10)–(13) entails solving a
sequence of Helmholtz problems, we present first the numerical method for solving the
Helmholtz problem. Let us consider the bidimensionnal Helmholtz equation

∇2u− σu = f, (x, y)∈ D, (14)

whereσ is a non-negative constant and the domainD is defined by (6). We assume peri-
odic boundary conditions in thex-direction and in they-direction we consider the mixed
Dirichlet–Neumann boundary conditions

α−u(x,−1)+ β−∂yu(x,−1) = g−(x) (15)

α+u(x, 1)+ β+∂yu(x, 1) = g+(x), (16)

where the coefficientsα−, α+, β−, andβ+ satisfy the conditions

α−β− ≥ 0, α+β+ ≥ 0. (17)

3.1. Numerical Discretisation

The numerical approximation of the Helmholtz problem (14)–(16) makes use of the
wavelet method in the direction of periodicity and the collocation Chebychev method in the
non-periodic direction. The family of Daubechies wavelets is used to implement the method.
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The approximation is done on the basis of the translates and dilations of the Daubechies
scaling function.

The Daubechies correlation function (Daubechies [1]) withN non-vanishing “filter co-
efficients” satisfies the scaling relation

ϕ(x) =
N−1∑
k=0

hkϕ(2x − k). (18)

The parameterN will be referred to as the degree of the scaling functionϕ. In relation (18)
the “filter coefficients”hk, k= 0, . . . , N− 1, are chosen so that the scaling functionϕ has
some desirable properties. The functionϕ has support in interval [0, N− 1] and it induces
a multiresolution analysis onL2(R), i.e., a nested sequence of functional spacesVj , j ∈ Z,
such that the union is dense inL2(R), and for eachj , the sequence{ϕ j,k}k∈Z defined by

ϕ j,k(x) = 2 j/2ϕ(2 j/2x− k) (19)

forms an orthogonal Riesz basis forVj . Now choosing an approximation spaceVJ , a function
u belonging toL2(R) is expanded in the basis (19) at the scaleJ,

uJ(x) =
∑
k∈Z

ckϕJ,k(x). (20)

The coefficients{ck}k∈Z define the functionuJ in the wavelets space. We will use the appel-
lation “wavelets coefficients” to designate these coefficients even though the approximation
uses the scaling functions basis.

Now one needs some techniques for evaluating the wavelets coefficients. In the periodic
situation this can be done by considering the values of the function at a set of discrete points
2−Jk, k= 0, . . . ,2J−1. Writing the expansion (20) at these points, and taking into account
the periodicity condition, one gets a linearly independent system of order 2J which links
the wavelet coefficients to the values of the functionuJ at the discrete points.The operator
of the system is a circulant operator with kernelKϕ = (0, ϕ1, . . . , ϕN−2, 0, . . . ,0), where
ϕi =ϕ(i ). Thus the physical values of the function are obtained by taking the convolution
product of the kernelKϕ and the vector of the wavelet coefficients

Kϕ ∗C = U (21)

since multiplication of a vector by a circulant matrix is the same as a convolution between
the vector and the first column of the matrix. The convolution product in (21) may be
efficiently done by resorting to FFTs. For this we first take the Fourier transform of (21) to
obtain

Fk(Kϕ) · Fk(C) = Fk(U ) (22)

since a convolution in physical space is equivalent to a term by term product in Fourier
space. The notationFk is used for the coefficients in the Fourier space. Conversely one gets
the wavelet coefficients from the physical values by

Fk(C) = Fk(U )/Fk(Kϕ). (23)
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Remark. All the Fourier coefficientsFk(Kϕ) are different from zero by virtue of the
reversibility of the discrete transformation (21).

Now coming back to the bidimensional problem (14), we use the wavelet basis described
above to approximate the solution in the periodic direction and in the non-periodic direction
we use the Chebychev approximation.

As in the previous setting, the scale used isJ. The functionu(x, y) is expanded in thex
direction in the basis (19)

u(x, y) =
∑
k∈Z

φk(y)ϕJ,k(x), (24)

where this time the wavelet coefficientsφk depend upon the variabley. It is convenient to
make the variable transformz= 2J x so that the expansion (24) becomes

u(z, y) = 2J/2
∑
k∈Z

φk(y)ϕ(z− k). (25)

In the same way, the forcing termf is expanded in the basis (19). Now substituting the
expansion ofu and f in Eq. (14) one gets∑

k∈Z

22Jφk(y)ϕ
′′(z− k)+

∑
k∈Z

φ′′k (y)ϕ(z− k)− σ
∑
k∈Z

φk(y)ϕ(z− k)

=
∑
k∈Z

f̂ k(y)ϕ(z− k). (26)

The same substitution is done in the boundary conditions (15) and (16) to obtain respectively

α−
∑
k∈Z

φk(−1)ϕ(z− k)+ β−
∑
k∈Z

φ′(−1)ϕ(z− k) =
∑
k∈Z

ĝ−k ϕ(z− k) (27)

α+
∑
k∈Z

φk(1)ϕ(z− k)+ β+
∑
k∈Z

φ′(1)ϕ(z− k) =
∑
k∈Z

ĝ+k ϕ(z− k). (28)

Thus the projection of (14)–(16) in the wavelet space results in the system of Eqs. (26)–(28).
We use two different techniques to discretise this set of equations in thez variable: the
wavelet collocation method and the wavelet Galerkin method. Both methods are then cou-
pled with a collocation Chebychev discretisation in they-direction. The mixed wavelet
collocation/collocation Chebychev will be referred to as the WC/CC method and the wavelet
Galerkin/collocation Chebychev as the WG/CC method. These techniques are presented in
the following subsections.

3.1.1. The wavelet collocation/Chebychev collocation method.We present here the
discretisation of (26)–(28) in the WC/CC method. First the interval [0, 1] is discretised into
the dyadic points

xi = 2−J i, i = 0, . . . , Nx − 1, (29)

where Nx = 2J . The collocation method consists in writing the equations at the set of
discrete pointsxi , which amounts to writing Eqs. (26)–(28) at the integer pointszi = i ,
i = 0, . . . , Nx − 1. Here we don’t need to expand the forcing term in the wavelet space
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in Eqs. (26)–(28) since only their physical values are needed. Expressing the differential
equations (26) at the integer points, one gets the semi-discrete system of equations

4J
∑
k∈Z

φk(y)ϕ
′′
i−k +

∑
k∈Z

φ′′k (y)ϕi−k − σ
∑
k∈Z

φk(y)ϕi−k = f (xi , y), (30)

whereϕi−k=ϕ(i − k) andϕ′′i−k=ϕ′′(i − k).
In a similar way the boundary conditions (27) and (28) are written at the integer points

zi , 0≤ i ≤ Nx − 1, to obtain respectively

α−
∑
k∈Z

φk(1)ϕi−k + β−
∑
k∈Z

φ′(1)ϕi−k = g−(xi ,−1) (31)

and

α+
∑
k∈Z

φk(1)ϕi−k + β+
∑
k∈Z

φ′(1)ϕi−k = g+(xi , 1). (32)

The system (30) together with the boundary conditions (31)–(32) constitutes a system
of second order ordinary differential equations for the wavelets coefficientsφi . We now
introduce the discretisation of these equations iny. This is done in the Chebychev collocation
method. The interval [−1, 1] is discretised into the collocation points

yj = cos( jπ/Ny), j = 0, . . . , Ny. (33)

The points (33) are the Gauss–Lobatto points. They are the collocation points most
frequently used in spectral Chebychev methods because they not only guarantee a good
convergence but also allow the use of FFTs.

We are then looking for a polynomial of degreeNy

φ(y) =
Ny∑
j=0

φ̂ j Tj (y),

whereTj is the Chebychev polynomial of degreej . For a non-negative integern the discrete
values of derivativesφ(n) are related to the discrete values of the functionφ by the relation

φ(n)(yj ) =
Ny∑

l=0

d(n)j,l φ(yl ). (34)

The coefficientsd(n)j,l are the entries of the discrete approximation for the derivative of order
n in the collocation Chebychev method. Then writing (30) at the collocation pointsyj and
substituting and the second derivativeφ′′ with its expression one gets

∑
k∈Z

{
4Jϕ′′i−k− σϕi−k

}
φk, j +

∑
k∈Z

Ny∑
l=0

d(2)j,l φk,lϕi−k = fi, j ,

0≤ i ≤ Nx − 1, 0≤ j ≤ Ny, (35)
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whereφk, j =φk(yj ), and fi, j = f (xi , yi ). Replacing derivativeφ′ by it expression in the
boundary conditions (31) and (32) one gets respectively

α−
∑
k∈Z

φk,Nyϕi−k + β−
∑
k∈Z

Ny∑
l=0

d(1)Ny,lφi,lϕi−k = g−(xi ,−1), 0≤ i ≤ Nx − 1 (36)

and

α+
∑
k∈Z

φk,0ϕi−k + β+
∑
k∈Z

Ny∑
l=0

d(1)0,l φk,lϕi−k = g+(xi , 1), 0≤ i ≤ Nx − 1. (37)

Now, because of the hypothesis of periodicity in thex-direction, the coefficientsφi, j are
periodic in the first index, the period length beingNx, i.e.,φi+Nx, j =φi, j (cf. Amaratunga and
Williams [4]). Taking into account this periodicity, the set of equations (35) constitutes an
Nx × (Ny+ 1) linear system for the unknownsφi, j . Then eliminating the boundary values
{φi,0}0≤i≤Nx−1 and{φi,Ny}0≤i≤Nx−1 in (35) using the boundary conditions (36) and (37), we
obtain anNx × (Ny− 1) system which can be put into the matrix form

Dc
2,x8+8Dt

2,y − σ8 = f, (38)

where the matrix8 is defined as

8k, j = 8k, j , 0≤ k ≤ Nx − 1, 1≤ j ≤ Ny − 1. (39)

The operatorDc
2,x is the approximation of the second order derivative in the wavelet colloca-

tion method. It is a circulant operator with kernelK (2)
c = 4J(0, ϕ′′1, . . . , ϕ

′′
N−2, 0 . . . ,0). The

operatorD2,y is the discrete approximation of the second order derivative in the collocation
Chebychev method when boundary conditions are included. The right hand sideF in (38)
contains the forcing term in the physical space and all the terms arising from the elimination
of the boundary values.

3.1.2. The wavelet Galerkin/collocation Chebychev method.In the Galerkin method,
Eq. (26) is projected onto the wavelet space using the basis functions as test functions. For
this we multiply both sides of (26) byϕ(z− i ) and integrate overR

4J
∑
k∈Z

φk(y)
∫

R
ϕ′′(z− k)ϕ(z− i ) dz+

∑
k∈Z

{φ′′k (y)− σ }
∫

R
ϕ(z− k)ϕ(z− i ) dz

=
∑
k∈Z

f̂ k

∫
R
ϕ(z− k)ϕ(z− i ) dz.

Using the orthogonality conditions
∫

R ϕ(z− k)ϕ(z− i ) dz= δi,k, one gets∑
k∈Z

4Jφk(y)Äi−k + φ′′i (y)− σφi (y) = f̂ i , i ∈ Z, (40)

where the connection coefficientsÄi−k are defined by

Äi−k =
∫

R
ϕ′′(z− k)ϕ(z− i ) dz. (41)
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The method for computing these coefficients was presented in Lattoet al. [15]. The set
of equations (40) form a system of the second order ordinary differential equations for the
coefficientsφk. Boundary conditions for Eqs. (40) are deduced from the boundary conditions
(27) and (28). For this we multiply again both sides of (27) and (28) respectively byϕ(z− i )
and take the integral overR to get respectively

α−φi (−1)+ β−φ′i (−1) = ĝ−i , i ∈ Z (42)

and

α+φi (1)+ β+φ′i (1) = ĝ+i , i ∈ Z. (43)

The system (40), together with the boundary conditions (42) and (43), allows the determi-
nation of the coefficientsφk.

Here too, the discretisation in the non-periodic direction makes use of the Chebychev
collocation method. The interval [−1, 1] is discretised into the collocation pointsyj ,

j = 0, . . . , Ny, where theyj ’s are defined by (33). Then writing (40) at these points one gets

4J
∑
k∈Z

φk,lÄi−k +
Ny∑
j=0

d(2)i,l φk,l − σφi, j = f̂ i, j , 0≤ i ≤ Nx − 1, 0≤ j ≤ Ny, (44)

whereφi, j =φi (yj ), f̂ i, j = f̂ i (yj ).
In a similar way we replaceφ′ by its expression in the boundary conditions (42) and (43)

to get respectively

α−φi,Ny + β−
Ny∑

l=0

d(1)Ny,lφi,l = ĝ−Ny
, 0≤ i ≤ Nx − 1 (45)

and

α+φi,0+ β+
Ny∑

l=0

d(1)0,l 8i,l = ĝ+0 , 0≤ i ≤ Nx − 1. (46)

Again we use the periodicity condition for the coefficientsφi, j in the first direction to reduce
the system (44) into a system of orderNx× (Ny+1). Then eliminating the boundary values
{φi,0}0≤i≤Nx−1 and{φi,Ny}0≤i≤Nx−1 in (44) using (45) and (46), we reduce the system to a
Nx × (Ny− 1) system which in matrix form reads

Dg
2,x8+8Dt

2,y − σ8 = F̂ . (47)

The matrixDg
2,x is the matrix of the second derivative in the wavelet Galerkin method. It’s

also a circulant matrix whose kernel (i.e., the first column of the matrix) is given by

K (2)
g = (0, Ä1, . . . , ÄN−2, 0, . . . ,0, Ä2−N, . . . , Ä−1)

t . (48)

The matrixD2,y is defined as before. The right hand sideF̂ contains the forcing term in the
wavelet space and the quantities arising from the elimination of the boundary values.
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To invert the systems (38) and (48) we first diagonalise the matrixD2,y. The diago-
nalisation technique is commonly associated with the spectral Chebychev approximation
for solving the Helmholtz problem (Haidvogel and Zang [14]; Haldenwanget al. [13];
Ehrenstein and Peyret [12]).

It is known (Gottlieb and Lustman [16]) that the eigenvalues of the operatorD2,y are real
negative and distinct. Thus there exists an operatorS such that

Dt
2,y = S3S−1. (49)

3 is a diagonal matrix whose entries are the eigenvaluesλ j , 1≤ j ≤ Ny − 1, ofD2,y.
Let us consider the case of the WC/CC method. Multiplying on the right on the both

sides of (38) byS we get

Dc
2,x8̃+ 8̃3− σ8̃ = F̃, (50)

where

8̃ = 8S, F̃ = FS. (51)

Now if we set

8̃( j ) =
(
8̃0, j , . . . , 8̃i, j , . . . , 8̃Nx, j

)t
and F̃ ( j ) =

(
F̃0, j , . . . , F̃ i, j , . . . , F̃ Nx, j

)t

(52)

then the system (50) splits intoNy − 1 one dimensional Helmholtz problems[
Dc

2,x − (σ − λ j )I
]
8̃( j ) = F̃ ( j ), 1≤ j ≤ Ny − 1. (53)

In the case of the WG/CC method, applying the same process will result in a system similar
to (53) with matrixDg

2,x in place ofDc
2,x and ˜̂F ( j ) instead ofF̃ ( j ) on the right hand side.

The systems (53) are easily solved by resorting to FFTs. Briefly, letHj =Dc
2,x−(σ −λ j )

be the one dimensional Helmholtz operator. ThenHj is a circulant operator and the system
(53) may be put in a convolution form

KHj ∗ 8̃( j ) = F̃ ( j ), (54)

where the kernelKHj is the first column of the operatorHj . Then taking the Fourier
transform of (54) one gets

Fk
(
KHj

) · Fk
(
8̃( j )

) = Fk
(
F̃ ( j )

)
. (55)

The wavelet coefficients in the Fourier spaceFk(8̃( j )) can be eliminated from (55) allowing
one to work only with the Fourier coefficients of quantities in the physical space. For this
we notice first the relations (22) and (23) are also valid for8̃( j ) and its Fourier spectrum
Fk(8̃( j )). Thus substituting in (55)Fk(8̃( j )) with its expressionFk(Ũ ( j ))/Fk(Kϕ) we get

Fk
(
K c

Hj

) · Fk
(
Ũ ( j )

) = Fk
(
F( j )
)
, (56)
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whereFk(K c
Hj
)=Fk(KHj )/Fk(Kϕ). The quantitiesFk(Ũ ( j )) are the Fourier coefficients

of the vectorŨ ( j ), which is obtained from the matrixU of the physical values after applying

the process (51) and (52). In the WG/CC method both coefficientsFk(8̃( j )) andFk(
˜̂F ( j ))

have to be eliminated. It results then in a system analogous to (56) withFk(K
g
Hj
)=Fk(KHj )

in place ofFk(K c
Hj
).

Remark. For Neumann boundary conditions, one eigenvalue in the spectrum ofD2,y

is equal to 0. Thus in the case of the Poisson equation(σ = 0) with Neumann boundary
conditions, the first coefficientF0(KHj ) in the Fourier spectrum ofKHj is zero in both
the WC/CC and WG/CC method. In order to avoid a division by zero in (56), we set
F0(Ũ ( j ))= 0.

4. SOLUTION METHOD FOR THE STOKES-LIKE PROBLEM

In this section, we present the numerical method for solving the stationary Stokes problem
(12)–(13) with boundary conditions (10)–(11) and periodicity in the first direction. For
simplicity of notation we drop the superscriptn+1 on the variables and rewrite the problem
(12)–(13) as

∇2ω − σω = f in D (57)

∇2ψ + ω = 0 in D (58)

together with boundary conditions

ψ = g, on 0 (59)

∂yψ = h, on 0 (60)

and periodicity conditions in the direction ofx. The domainD and the confined boundary
0 are defined by (6) and (7), respectively. As was pointed out earlier, the main diffi-
culty in solving problem (57)–(60) arises from the lack of boundary conditions for the
vorticity while 2 boundary conditions are prescribed for the stream function.

To solve the above problem we look for Dirichlet boundary conditionsµ onω such that
if a pair of functions(ω,ψ) which are periodic inx is a solution of{∇2ω − σω = f, in D

ω = µ, on 0
(61)

and {∇2ψ + ω = 0, in D
ψ = g, on 0

(62)

then the functionψ satisfies the Neumann boundary condition (60). This will be done by
resorting to the influence matrix method.

We first discretise the domainD and the boundary0 into collocation points

Dc = {(xi , yj ), 0≤ i ≤ Nx − 1, 1≤ j ≤ Ny}
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and

0c = {(xi ,−1), (xi , 1), 0≤ i ≤ Nx − 1}

and letN0 be the cardinality of0c: N0 = 2J+1. The essence of the influence matrix method
lies in the superposition principle for linear problems. We are looking for the pair functions
(ω,ψ) in the form

(ω,ψ) = (ω̃, ψ̃)+
N0∑
j=1

µ j (ω̄ j , ψ̄ j ), (63)

where(ω̃, ψ̃) is a solution of{∇2ω̃ − σ ω̃ = f̃ , in Dc

ω̃ = 0, on 0c
(64)

{∇2ψ̃ + ω̃ = 0, in Dc

ψ̃ = g, on 0c
(65)

and for 1≤ j ≤ N0 each pair of functions(ω̄ j , ψ̄ j ) is associated with a pointpj on the
boundary0c and is defined by the homogeneous problem{∇2ω̄ j − σ ω̄ j = 0 in Dc

ω̄ j (pk) = δ jk on 0c
(66)

{∇2ψ̄ j + ω̄ j = 0 in Dc

ψ̄ j = 0 on0c
(67)

such that by construction, the functionsω andψ considered in the decomposed form (63)
are solutions of Eqs. (57) and (58) and in addition the functionψ satisfies the Dirichlet
boundary conditions (59). The coefficientsµk are then determined by demanding that the
functionψ satisfies the Neumann boundary conditions (60). By writing this condition on
ψ considered in the form (63) we get

N0∑
j=1

µ j ∂yψ̄ j (pk) = h(pk)− ∂yψ̃(pk). (68)

This constitutes a system ofN0 equations for theN0 coefficientsµk and the system may
be put into the matrix form

M2 = R, (69)

where2= (µ0, . . . , µi , . . . , µN0 )
t . The capacitance matrixM and the right hand side of

(69) are defined by

Mk, j = ∂yψ̃j (pk), Rk = h(pk)− ∂yψ̃(pk). (70)

Thus the solution of the problem amounts to solving a series of Helmholtz and Poisson
problems with periodic and Dirichlet boundary conditions. The numerical resolution of
these problems is done either by the WC/CC or the WG/CC method presented in Section 2.
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5. NUMERICAL RESULTS

5.1. Numerical Results for the Helmholtz Problem

We present here the numerical results obtained by applying the previous methods to
solving the Helmholtz equation. The methods are validated against the following analytical
solution

uex(x, y) = (1− y2)2 e1+y e150(x−1/2)2. (71)

The forcing term in Eqs. (14)–(16) is obtained from the solution (71). Various numerical
tests have been conducted by changing the degree of the Daubechies waveletN and the
numberJ of the scale. The number of collocation in they-direction is kept constant and large
enough(Ny= 24) so that the error in the wavelet approximation is greater than the error
in the Chebychev approximation. The results obtained by using various kinds of boundary
conditions are similar. Thus we present only the results obtained with Dirichlet boundary
conditions: i.e., by takingα− =α+ = 1 andβ− =β+ = 0 in (15)–(16).

Tables I and II show the relative pointwise error on the numerical solution by the WC/CC
and WG/CC methods, respectively. It can be seen that for small degree of the Daubechie
scaling function, the results obtained by the WC/CC method are poor (Table I). The con-
vergence of the error is too slow. On the other hand, good decrease of the error is observed
even for small degree of the scaling function when the WG/CC method is used (Table II).
This is normal since in the WC/CC one needs the basis functions to be sufficiently regular
while in the WG/CC one asks only the basis functions to belong toL2(R). The regularity of
the Daubechies scaling function increases with its degree. ForN= 14 the basis functions
are at least inC2(R) (cf. Daubechies [1]). It can be seen in Tables I and II that when the
degree is taken large enough to ensure sufficient regularity for the scaling function, the
decrease of the error in both methods is comparable to that usually observed in spectral
methods.

TABLE I

Pointwise Error in the WC/CC Solution of the Helmholtz Problem with Dirichlet

Boundary Conditions, (a)σ = 0, (b)σ = 1000

J 5 6 7 8 9

8 (a) 5.224× 10−1 2.378× 10−1 9.839× 10−2 2.975× 10−2 7.957× 10−3

(b) 4.914× 10−1 1.840× 10−1 7.626× 10−2 2.300× 10−2 6.154× 10−3

10 (a) 8.563× 10−2 1.622× 10−2 2.298× 10−3 2.918× 10−4 3.770× 10−5

(b) 4.410× 10−2 8.235× 10−3 1.151× 10−3 1.467× 10−4 1.863× 10−5

12 (a) 5.279× 10−2 5.375× 10−3 3.528× 10−4 2.217× 10−5 1.289× 10−6

(b) 2.735× 10−2 2.892× 10−3 1.926× 10−4 1.267× 10−5 7.413× 10−7

14 (a) 2.507× 10−2 1.181× 10−3 3.950× 10−5 1.261× 10−6 3.965× 10−8

(b) 1.344× 10−2 7.083× 10−4 2.390× 10−5 7.634× 10−7 2.400× 10−8

16 (a) 7.730× 10−3 2.383× 10−4 4.460× 10−6 7.406× 10−8 2.209× 10−9

(b) 4.314× 10−3 1.478× 10−4 2.834× 10−6 4.680× 10−8 9.737× 10−10

18 (a) 1.156× 10−3 1.580× 10−5 1.785× 10−10 1.583× 10−9 4.372× 10−11

(b) 7.577× 10−4 1.017× 10−5 1.199× 10−7 1.065× 10−10 9.380× 10−12
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TABLE II

Pointwise Error in the WG/CC Solution to the Helmholtz Problem with Dirichlet

Boundary Conditions, (a)σ = 0, (b)σ = 1000

J 5 6 7 8 9

6 (a) 2.164× 10−2 2.061× 10−3 1.422× 10−4 9.084× 10−6 5.698× 10−7

(b) 1.133× 10−2 1.111× 10−3 7.754× 10−5 4.969× 10−6 3.124× 10−7

8 (a) 4.017× 10−3 1.159× 10−4 2.114× 10−6 3.297× 10−8 6.108× 10−9

(b) 2.384× 10−3 7.231× 10−5 1.338× 10−6 2.181× 10−8 3.093× 10−10

10 (a) 1.139× 10−3 1.093× 10−5 5.397× 10−8 9.430× 10−10 3.398× 10−10

(b) 7.347× 10−4 7.467× 10−6 3.760× 10−8 1.467× 10−10 8.124× 10−11

12 (a) 4.088× 10−4 1.386× 10−6 2.624× 10−9 7.384× 10−10 8.671× 10−10

(b) 2.795× 10−4 1.006× 10−6 1.564× 10−9 1.580× 10−10 1.522× 10−10

14 (a) 1.724× 10−4 2.161× 10−7 3.381× 10−10 1.226× 10−9 4.978× 10−9

(b) 1.229× 10−4 1.638× 10−7 1.089× 10−10 1.226× 10−9 4.605× 10−11

5.2. Numerical Results for the Stationary Stokes-like Problem

We present the numerical results obtained using the influence matrix method for the
solution of the stationary Stokes problem. The following analytical solution is considered
to validate the method

ψex(x, y) = (1− y2)2 e1+y e150(x−1/2), Äex= −∇2ψex (72)

which satisfies the no-slip conditions on0 (i.e., h= g= 0 in (59) and (60)). The forcing
term in (57) is deduced from the analytical solution (72).

Tables III and IV show the condition number of the capacitance matrix in the WC/CC
and WG/CC methods, respectively. It can be seen that the condition number deteriorates
with decreasing scales but is improved by increasing the degree of regularity of the scaling
function. However, the conditioning of the capacitance matrix doesn’t seem to influence
too much the numerical results. In the WC/CC method the degree of the scaling function
is taken large enough to ensure a minimum of regularity. Tables V and VI, VII and VIII
show the pointwise errors on the vorticity function in the WC/CC and WG/CC methods,
respectively. The numerical results are obtained for 2 values of the parameterσ : value 10
corresponding to a large time step and value 1000 corresponding to a small time step in the

TABLE III

Condition Number of the Capacitance Matrix in the WC/CC Method, (a) σ = 1, (b)σ = 1000

J 4 5 6 7 8

12 (a) 1.091× 10−2 3.548× 10−3 4.755× 10−4 3.985× 10−5 2.532× 10−6

(b) 2.128× 10−1 7.083× 10−2 1.059× 10−2 9.944× 10−4 6.097× 10−5

14 (a) 1.332× 10−2 4.830× 10−3 9.147× 10−4 9.081× 10−5 5.978× 10−6

(b) 2.666× 10−1 1.119× 10−1 2.202× 10−2 2.154× 10−3 1.534× 10−4

16 (a) 1.529× 10−2 6.333× 10−3 1.183× 10−3 1.245× 10−4 8.828× 10−6

(b) 2.960× 10−1 1.292× 10−1 2.856× 10−2 2.960× 10−3 2.152× 10−4

18 (a) 1.965× 10−2 8.476× 10−3 3.208× 10−2 1.480× 10−4 1.082× 10−5

(b) 2.980× 10−1 1.383× 10−1 1.398× 10−3 3.484× 10−3 2.575× 10−4
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TABLE IV

Condition Number of the Capacitance Matrix in the WG/CC Method, (a) σ = 1, (b)σ = 1000

J 4 5 6 7 8

6 (a) 9.948× 10−3 3.888× 10−3 6.074× 10−4 5.322× 10−5 1.321× 10−6

(b) 2.062× 10−1 8.592× 10−2 1.429× 10−2 1.272× 10−3 3.059× 10−5

8 (a) 1.470× 10−2 4.897× 10−3 8.786× 10−4 8.096× 10−5 6.356× 10−6

(b) 2.657× 10−1 1.064× 10−1 2.024× 10−2 1.940× 10−3 1.372× 10−4

12 (a) 1.544× 10−2 5.355× 10−3 1.022× 10−3 9.747× 10−5 7.784× 10−6

(b) 2.787× 10−1 1.162× 10−1 2.248× 10−2 2.335× 10−3 1.672× 10−4

TABLE V

Pointwise Error on ω in the Solution of the Stationary Stokes Problem,

with the WC/CC Method, (a) σ = 0, (b)σ = 1000

J 5 6 7 8

12 (a) 2.129× 10−1 2.534× 10−2 1.734× 10−3 1.097× 10−4

(b) 1.281× 10−1 1.592× 10−2 1.099× 10−3 6.979× 10−5

14 (a) 1.074× 10−1 7.076× 10−3 2.388× 10−4 7.631× 10−6

(b) 6.787× 10−2 4.728× 10−3 7.891× 10−5 5.149× 10−6

16 (a) 3.964× 10−2 1.535× 10−3 3.031× 10−5 5.047× 10−7

(b) 2.411× 10−2 1.047× 10−3 2.104× 10−5 1.318× 10−7

18 (a) 8.573× 10−3 1.099× 10−4 1.391× 10−6 1.252× 10−8

(b) 6.065× 10−3 7.655× 10−5 9.979× 10−7 9.045× 10−9

TABLE VI

Pointwise Error on ψ in the Solution of the Stationary Stokes Problem,

with the WC/CC Method, (a) σ = 0, (b)σ = 1000

J 5 6 7 8

12 (a) 9.995× 10−2 1.701× 10−2 7.050× 10−4 4.426× 10−5

(b) 7.630× 10−2 8.240× 10−3 5.451× 10−4 3.429× 10−5

14 (a) 5.185× 10−2 2.374× 10−3 7.891× 10−5 2.519× 10−6

(b) 3.891× 10−2 1.898× 10−3 6.307× 10−5 2.022× 10−6

16 (a) 1.629× 10−2 4.776× 10−4 8.935× 10−6 1.484× 10−7

(b) 1.257× 10−2 3.870× 10−4 7.295× 10−6 2.470× 10−9

18 (a) 2.312× 10−3 3.156× 10−5 3.568× 10−7 3.161× 10−9

(b) 1.917× 10−3 2.595× 10−5 2.981× 10−7 2.645× 10−9
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TABLE VII

Pointwise Error on ω in the Solution of the Stationary Stokes Problem,

with the WG/CC, (a) σ = 0, (b)σ = 1000

J 5 6 7 8

6 (a) 8.433× 10−2 9.602× 10−3 6.936× 10−4 4.473× 10−5

(b) 5.273× 10−2 6.058× 10−3 4.400× 10−4 2.844× 10−5

8 (a) 2.155× 10−2 7.525× 10−4 1.438× 10−5 2.361× 10−7

(b) 1.426× 10−2 2.310× 10−4 9.990× 10−6 1.646× 10−7

10 (a) 7.580× 10−3 9.013× 10−5 4.727× 10−7 1.663× 10−9

(b) 5.272× 10−3 6.569× 10−5 3.494× 10−7 3.586× 10−10

12 (a) 3.204× 10−3 1.378× 10−5 2.114× 10−8 8.555× 10−10

(b) 2.315× 10−3 1.048× 10−5 3.065× 10−8 3.586× 10−10

14 (a) 1.539× 10−3 2.507× 10−6 1.308× 10−9 2.079× 10−10

(b) 1.145× 10−3 1.970× 10−6 9.481× 10−10 2.079× 10−10

temporal discretisation. The results don’t depend too much on the value ofσ . As in the case
of the Helmholtz problem, a spectral accuracy is reached provided the scaling function is
sufficiently regular.

5.3. Numerical Results for the Instationary Stokes Problem

We present here the numerical results obtained for the unsteady Stokes problem. After
discretising the problem (1)–(4) using the scheme (8)–(11), the resulting stationary Stokes-
like problems is solved at each time step by the methods previously presented. The algorithm
is first validated against the analytical solution

ψex(x, y, t) = cos(t) cos(2πx)(1− y2)2 e1+y, ωex= −∇2ψex. (73)

Figure 1 shows the results obtained for the stream function. The results for the vorticity are
similar. The number of collocation points in they-direction is stillNy= 24. These results
are obtained by taking the degree of the scaling function to beN= 8 and the scale of
resolution inx is J= 5 (i.e., Nx = 32) in the case of the WG/CC method andN= 12 and

TABLE VIII

Pointwise Error on ψ in the Solution of the Stationary Stokes Problem,

with the WG/CC Method, (a) σ = 0, (b)σ = 1000

J 5 6 7 8

6 (a) 4.060× 10−2 3.141× 10−3 2.836× 10−4 1.813× 10−5

(b) 3.124× 10−2 4.074× 10−3 2.192× 10−4 1.403× 10−5

8 (a) 7.795× 10−3 5.166× 10−4 4.223× 10−6 6.760× 10−8

(b) 6.232× 10−3 1.877× 10−4 3.449× 10−6 5.477× 10−8

10 (a) 2.234× 10−3 2.183× 10−5 1.076× 10−7 7.543× 10−10

(b) 1.841× 10−3 1.837× 10−5 9.150× 10−8 8.817× 10−10

12 (a) 8.060× 10−4 2.769× 10−6 5.224× 10−9 1.419× 10−9

(b) 6.793× 10−4 2.389× 10−6 4.178× 10−9 8.817× 10−10

14 (a) 3.407× 10−4 4.320× 10−7 3.989× 10−10 7.556× 10−10

(b) 2.921× 10−4 3.797× 10−7 3.449× 10−10 1.156× 10−10
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FIG. 1. Maximum of the pointwise error in time ofψ with respect to the time step1t , with the WC/CC
method (circles) and the WG/CC method (triangles).
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J= 6 for the WC/CC method. These choices of spatial parameters are such that the spatial
error is always smaller than the error in time. Clearly the results in Fig. 1 show aO(1t2)

decrease of the error. A good stability of the method is also observed.

6. CONCLUSION

A mixed wavelet/spectral Chebychev method has been developed for solving the 2D
Stokes equations with periodicity condition in one direction. In the periodic direction the
approximation is done on the basis of the translates and dilations of the Daubechies scaling
function. The discretistion is done either in the wavelet collocation method or the wavelet
galerkin method. Then in the non-periodic direction the collocation Chebychev method is
used. A capacitance matrix method has been implemented to handle the boundary condi-
tions. This leads to a series of Helmholtz systems which are efficiently inverted using the
following ingredients:

• Diagonalisation in the non-periodic direction
• FFTs for inverting the operators in the wavelet space.

Numerical tests conducted on analytical solutions show that the method is stable and spec-
trally accurate with regard to the degree of regularity of the Daubechies scaling function. The
method can be extended to the Navier–Stokes equations by using an appropriate treatment
of the non-linear terms.
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